Understanding Spatial Reasoning in Vision-Language Models via
Sequence-Level Reinforcement Learning

Videet Mehta Shaurya Agrawal
MIT EECS MIT EECS
mvideet@mit.edu shaurlO@mit.edu

December 10th

Abstract

Vision-Language Models (VLMs) exhibit strong semantic understanding, similar to Large Language
Models, yet remain fundamentally limited in tasks requiring spatial reasoning and geometric awareness.
We hypothesize that sequence-level reinforcement learning (RL) algorithms may encourage VLMs to
form more coherent spatial representations, enabling one-shot trajectories that solve spatial problems
end-to-end. Using maze navigation as a controlled environment for spatial reasoning, we compare single-
action policies such as Proximal Policy Optimization (PPO) in the actor—critic setting to sequence-level
counterparts such as GRPO, GSPO, and GMPO, that replace value functions with relative rewards. Our
early results show that token-level credit assignment remains crucial: PPO achieves significantly higher
success rates, while sequence-level algorithms struggle due to coarse trajectory-level credit. These find-
ings suggest that PPO’s value function provides essential action-level feedback for visual-spatial reason-
ing, highlighting the importance of fine-grained credit assignment in training spatially capable VLMs.

1 Introduction

Multi-modal Large language models such as vision language models (VLMs) have significantly advanced
visual understanding capabilities since the advent of LLMs. Their language reasoning capabilities make it a
strong use-case of vision-question answering, pattern recognition, and object identification [1,/10l]. However,
agentic tasks such as navigating visual environments, spatial reasoning, and sequential decision-making.

Previous attempts to teach VLMs to navigate complex environment that require visual reasoning in-
clude traditional offline fine-tuning given a dataset and running supervised fine-tuning (SFT). This paradigm
teaches the model the general distribution of actions to output because of instruction tuning, but does not
significantly enhance the reasoning capabilities from explicit Chain-of-Thought reasoning that may benefit
a VLMs visual understanding [7]]. Additionally, pre-collected off-policy datasets may lack dataset diversity
to teach the agent a multitude of scenarios to plan around[5! 4]].

In this paper, we investigate reinforcement learning as a paradigm to increase visual reasoning capa-
bilities while trying to solve sequential decision-making tasks. Specifically we post-train a VLM with a
multitude of action-level and sequence-level RL algorithms. From previous work, we include the capability
for the VLM to output Chain-of-Thought (CoT) tokens, which is designed to provide a good “’prior” for the
VLM to output more consistent actions with the environment at hand.

We evaluate these RL algorithms by examining the speed of convergence of the reward function and the
empirical success rate during training on unseen mazes. Our primary environment that we are training on
are mazes spanning from 3x3 to 10x10 in size.

2 Related Work

RL to Train LLMs. RL has had a significant spike in popularity since the rise of large language models
to act as an agent. Proximal Policy Optimization (PPO) is a very common actor-critic policy with some
modifications. PPO is a clipped policy-gradient method that stabilizes on-policy training by constraining
each policy update to remain close to the previous policy. Its actor—critic structure provides dense, per-token
credit assignment through a learned value function [[13} 3, 18]

In traditional LLM/VLM post-training pipelines, the critic model is often comparable in size to the pol-

icy, making actor—critic methods costly during both training and inference. To reduce this overhead, Group
Relative Policy Optimization (GRPO) and related approaches replace the value function with a group-based
baseline computed from multiple trajectory rollouts [[14]]. Advantages are then estimated by normalizing
rewards across the group, providing a relative advantage signal without a critic. This strategy has yielded
notable improvements in mathematical reasoning and the emergence of “aha” moments in chain-of-thought
generation. Follow-up methods, including GSPO, DrGRPO, and GMPO, maintain the critic-free design
while introducing refinements that improve stability and convergence guarantees [18, (19, 9].
RL for Visual Reasoning. Previous work has shown that using PPO to fine-tune VLMs both increase the
CoT reasoning capabilities and improve actions in various games including Blackjack, AlfWorld, and num-
ber games [16]. They first fine-tune the VLM to output JSON outputs to encourage proper formatting so
that immportance weighting can be calculated. They weight the log probabilities for the CoT trace and the
action trace differently to allow the model to focus more on optimizing the action but also still providing
focus to the thinking/reasoning trace.

Another concurrent line of work evaluates GRPO on maze-solving tasks and reports strong improve-
ments in sequential navigation accuracy [2]. However, their approach does not leverage visual features
directly. Instead of using a VLM, the maze is encoded purely as a tokenized textual grid which limits the
model’s ability to form coherent spatial representations. Their hypothesis is that GRPO alone, similar to
introducing mathematical reasoning in the original GRPO paper, can induce spatial reasoning in an LLM
without requiring a vision encoder [14]. While effective to some degree, the reliance on symbolic maze
encodings constrains the richness of spatial information available to the model and is a more contrived
problem.

1. H1: Sequence-level RL algorithms (e.g., GSPO, GMPO) may better align with long-horizon spatial
tasks because they optimize entire trajectories rather than individual tokens.

2. H2: Token-level RL (e.g., PPO, GRPO) may still outperform sequence-level methods in environments
requiring precise step-level credit assignment.

3 Methodology

3.1 Input Representation and Environment

We randomly generate mazes (via the gym-maze) environment that range in size from 3x3 to 10x10. This
is done for curriculum learning as we start by training on smaller mazes and increase maze size as training
progresses, with the largest mazes being size 10 by 10. Prior to including it in our dataset, we verify that
the mazes are solvable via depth-first search (DFS). Additionally, we have some environment constraints
to make actions as realistic as possible. For example, while the agent is traversing the maze, it makes an
illegal action that isn’t allowed in the current episode (eg: turn into a wall). These properties make mazes
highly suitable probes of spatial reasoning. An example maze is shown in Fig.[I] Our pseudo-code for
Maze Generation is also provided in the Appendix. Each training episode begins with a maze image and an

instruction to navigate to the goal. The VLM produces a textual action sequence (e.g., “up, up, right, ...”),
which is executed by the environment. Depending on GRPO or PPO, we either output a sequence of actions
or a single action, respectively.

Figure 1: Example 10x 10 maze used in our experiments.

3.2 Supervised Fine-Tuning

To enhance instruction following and simplify the action parsing process during RL, we fine-tune the VLM
(L1aVA-7b) [6] on sample JSON output to bias the token distribution to similar outputs. We synthetically
generate 1000 completions from GPT-40-mini and run next token prediction on the entire completion, con-
trary to previous work that did next action token prediction only [2]]. We trained for 4 epochs with a learning
rate of 5e — 6. Sample prompts from the SFT dataset and the loss curve can be found in the Appendix.
Following SFT, we begin our Reinforcement learning formulation of the problem at hand.

4 RL Formulation

Here we will lay down, common terminology for the RL algorithms that we are testing on. Similar to
[17], below is the common terminology and variables we will use. Each prompt will be represented as
a RGB image ¢ and a corresponding system and instruction prompt x. The output will be represented as
y = mp(x), where my represents our VLM policy that outputs the actions. Additionally, let G be the number
of generations per provided maze such that we have y1, y2, ys, ..., Yg-

4.1 GRPO Reward Function

For each completion ¢, the reward is R; = sz»mt + R, We hvae a reward for formatting output right, a
full large reward for completing the entire maze succesfully, and partial rewards based on the Manhattan
distance between the current position and the goal. The detailed equation of the reward function can be
found in the Appendix. The training details and hyperparameters can be found in the Appendix as well.

4.2 GRPO

GRPO applies a PPO-style clipped policy-gradient objective to sequence models. They compute token-
level likelihood ratios and restricting them via a symmetric clipping function. The advantage is derived
directly from normalized reward model outputs, allowing GRPO to replace the value network with a sim-
ple, generation-level advantage signal. By averaging these clipped policy-gradient terms across tokens and
generations and regularizing with a KL penalty, GRPO achieves stable, high-variance-tolerant updates.

[o:]

G

1 1 . - . N

= o S :mln(riyt(G) Ay, clip(rig(6), 1 — 2, 1+¢) AM) — B Dxw(m || et
i=1 "t =1

(D

JGRPO(H) -]E(Ja {oit~ma g

Tyef Tyef ~ . r; — mean(r
Dy (79 || Teet) = 71-; — 10g<ﬂ_0) -1 Ay =7 = 7std(r) ()

4.3 GSPO

Based on this straightforward observation, we propose the Group Sequence Policy Optimization (GSPO) algorithm.
GSPO employs the following sequence-level optimization objective:

1

o melw |) \ B
- =(0) ‘(%@m)) |
2)

GRPO breaks down because it misuses importance-sampling weights at the token level, relying on single next-token
samples rather than many behavior-policy samples, which causes high-variance gradients and fails to correctly adjust
for distribution mismatch. This flawed design can trigger irreversible model collapse and shows that optimization
must happen at the sequence-level, matching how rewards are assigned, rather than at individual tokens [19]. Gradient
derivation can also be found in the Appendix.

G
1 . PO P
Jaspo(0) = BonD (4}~ (1) el Zmln(si(ﬁ) A;, clip(s;(0), 1 —¢, 14¢) Ai)

i=1

44 GMPO

GMPO uses the geometric mean of token-level ratios to reduce variance. For one, this lowers the value range of the
objective function, trivially reducing the probability of a policy going off-the-tracks and having stable policy updates.
In return, GMPO becomes less sensitive to outliers because of the properties of the geometric mean compared to the
arithmetic mean [18]].

1
|oi] loil

¢
* 1 1
Jampo(70) = Equg (038 ~mo () | & S T eix0) A -sgn(A4;) |, 3)

i=1 \t=1

Additionally, GMPO is more stable than GRPO because it remains robust to large importance sampling ratios.

45 PPO

PPO adds on top of Trust Region Policy Optimization (TRPO) and introduces dense, step-wise value estimates and
generalized advantage estimates (GAE), yielding fine-grained credit assignment [11} |12]. Generalized Advantage
estimation is a bias-variance controller estimator of the advantage function by combining multi-step TD residuals.
This property aligns closely with the local reward structure inherent to maze navigation. We attach a value-head
(MLP) to the VLM to represent our value function V,;(.). As we have talked about this in class, the objective function
is discussed in the appendix.

5 Results
5.1 GRPO

(a) Mean Reward: GRPO (b) Standard Deviation of
Reward: GRPO

Overall, we see an improvement in the average rewards and convergence in the rewards as they stabilize at around
a value of 6. We also see high variance relative to the average rewards, reflecting sensitivity to group baselines. An
interesting observation is that standard deviation increases as the training steps increase, which is a signal of further
exploration, depicting that the model is accurately exploring more paths as the training progresses.

5.2 GSPO

train/rewards/maze_execution_reward_func/mean train/rewards/maze_execution_reward_func/std

=l //«W e . //wfm\ /AWJW
7o .

/ i
]
/

s

(c) Mean Reward: GSPO vs. GRPO (d) Standard Deviation of Reward:
GSPO

We see that the average GSPO reward converges to a lower value than for GRPO while variance for the two are
in similar ranges. This is quite surprising as we hypothesize that this maze task is a sequence-level task and so a
sequence-level RL algorithm should perform well in identifying accurate trajectories. However, this is the first signal
that sequence-level algorithms may not be the best for this task. As a side, we aren’t quite sure what causes the large
dip in reward mid-training, however the value seems to converge back to its original value. This then motivates us to
go back to token-level algorithms, leading us to trying GMPO, which is a variant of GRPO as discussed earlier.

5.3 GMPO

train/rewards/maze_execution_reward_func/mean success_rate_cum
Z Gspose.sk - - .

(a) Mean Reward: GMPO vs. GSPO (b) Success Rate: GMPO
vs. GRPO

Overall we see that GMPO performs the best in terms of mean reward, yielding the highest values as compared to the
rest of the algorithms. Note that GMPO returns to the token-level view of GRPO.

However, we see that even while GMPO seems to have the best performance, it yields surprisingly low success,
confirming that coarse, trajectory-level credit assignment encourages almost-correct paths and dilutes signal for accu-
rate step-level updates to increase success-rate.

This motivates us to try PPO which provides dense step-level (TD(O)-type) rewards and uses value functions and
GAE estimates to assign credit to individual actions as opposed to singular cumulative rewards per trajectory used to
calculate advantages for updates. PPO directly maximizes expected return, which is much closer to optimizing for
success rate.

54 PPO

Graphs (c¢) and (d) are the success rates for our two best PPO implementations.

The first utilizes a dense reward where the reward function is the Manhattan distance of the current state minus the
Manhattan distance of the next state. Since these cells are placed at integer positions, the maximum reward an action
can achieve with this reward formulation is 1 and the minimum is —1. The second utilizes regular Euclidean distance
as the reward where the goal is to minimize the distance from the end goal state.

So, it is evident that the PPO trained on dense reward performs the best in terms of success rate, providing
improvements past the results of GMPO. Graphs (e) and (f) are the average reward and standard deviation curves for
this PPO trained on dense rewards.

(c) Success Rate: PPO (d) Success Rate: PPO (e) Mean Reward: PPO (f) Standard Deviation of
(Dense Reward) (Normalized Euclidean) (Dense Reward) Reward: PPO (Dense Re-
ward)

6 Discussion

Our findings contradict the initial expectation (H1). Sequence-level RL does not offer an advantage for this spatial
task. Instead, token-level algorithms, specifically step-level update/value function-based algorithms, succeed because:

» Sequence-level averaging and updates dilute gradients across all actions in trajectory, adding noise and weak-
ening the learning signal

» Fine-grained differences in late-stage steps are essential to success, which sequence-level does not necessarily
optimize for.

 This leads us to conclude that this maze solving task is a locally-rewarded, MDP problem more than a long-
horizon sequential task

First, let’s focus on the issues with value-free algorithms both sequence-level and token-level, specifically coarse credit
assignment. So, all three of these algorithms are similar in how they calculate the rewards. They all calculate one sin-
gular reward per trajectory which are then converted to advantages and used (once the appropriate importance sampling
is performed) to weight the log-probs of the tokens of that trajectory. As a result, the output singular reward/signal gets
distributed across every action in the sequence to update the tokens. So even if we have early steps that had minimal
positive impact on the trajectory relative to the final few actions/middle actions and the overall reward was positive/the
trajectory was successful, the early steps will still get the same positive reinforcement from the gradients due to this
distribution of this singular reward. In the case the trajectories are mildly noisy with suboptimal moves but eventual
success, algorithms like GMPO will still positively reinforce those suboptimal actions since they were a part of the
trajectroy rather than focusing on individual actions that made the most difference.

In the case of a maze, the last few actions matter a huge amount and due to the coarse credit assignment of algo-
rithms like GMPO, the model might fail to optimize for these last few steps giving us the results we see with GMPO
where there is mean rewards increase and converge but success rates remain low. Even though, there is a goal state
bonus to help with rewarding optimal actions in the last few states, the rarity of successes and the high variance in
these sequence-level gradients can lead to the goal state bonus not having much of an impact. Furthermore, group
normalization used in GMPO further compresses these goal state bonuses, giving us relative, re-scaled reward causing
the relative difference in advantage between almost-complete paths and complete-paths to not be large and resulting
in the final state bonuses to become insignificant.

In contrast, PPO offers local, dense rewards that rewards each step. Using the critic value function and GAE
estimates, the model gets strong signals (even though the value loss for the critic does not necessarily converge) to
maximize the sum of discounted returns and assign credit to invidual actions which is much closer to the true objective
of the task and the success rate metric since it is sensitive to step-level rewards/updates. With PPO, we also mitigate
the issue of high-variance returns from rare goal state bonuses as each time a complete path and a goal state bonus
is achieved we see a cascade of informative TD updates across multiple timesteps. The value function and GAE
estimates ensure each action update at the step-level is associated with that states future return which is exactly the
information needed for such as task. So, it is quite evident that GRPO/GSPO/GMPO are not the correct algorithms
for this task as they are not maximzing the objective necessary for this task and as a result are not solving the task
directly in comparison to PPO which focuses on dense local structure. This leads us to conclude that this task is not

a sequential, long-horizon task and is closer to a locally-rewarded, step-level, MDP problem as we have seen many
times in class. This would explain why PPO’s step-level updates that resemble TD learning perform better as opposed
to broader and coarser sequence-level optimizations. Thus, we confirm H2: token-level credit assignment remains
critical for structured spatial reasoning in VLMs.

7 Conclusion

We present an early empirical study comparing sequence-level and token-level RL methods for improving spatial rea-
soning in VLMs. Our results show that sequence-level approaches underperform in structured, geometry-dependent
tasks, while PPO, a token-level method with dense credit assignment, achieves the strongest outcomes.

These results suggest that spatial reasoning in VLMs, especially for tasks like mazes even if they are large and
complex tasks, may require RL algorithms explicitly aligned with step-level structure rather than trajectory-level
smoothing. Future work will explore hierarchical RL objectives, state-space modeling, and learned world models to
further enhance VLM spatial competence. We also hope to make the problem more realistic to move from 2D de-
terministic agent navigation to 3D stochastic and noisy robot exploration policies. Overall, our results provide early
analyses as to how these algorithms might scale in further solving and advancing the larger issue of optimizing vision
models for real world interactions and reasoning.

References

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card,
Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris
Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei,
Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tat-
sunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani,
Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Lad-
hak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik,
Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan,
Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray
Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi
Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher
Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan
Taori, Armin W. Thomas, Florian Tramer, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,
Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun
Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation
models, 2022.

Alan Dao and Dinh Bach Vu. Alphamaze: Enhancing large language models’ spatial intelligence via grpo, 2025.

Tiantian Fan, Lingjun Liu, Yu Yue, Jiaze Chen, Chengyi Wang, Qiying Yu, Chi Zhang, Zhiqi Lin, Ruofei Zhu,
Yufeng Yuan, Xiaochen Zuo, Bole Ma, Mofan Zhang, Gaohong Liu, Ru Zhang, Haotian Zhou, Cong Xie,
Ruidong Zhu, Zhi Zhang, Xin Liu, Mingxuan Wang, Lin Yan, and Yonghui Wu. Truncated proximal policy
optimization, 2025.

Jiaxing Huang, Jingyi Zhang, Kai Jiang, Han Qiu, and Shijian Lu. Visual instruction tuning towards general-
purpose multimodal model: A survey, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning,
2024.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next:
Improved reasoning, ocr, and world knowledge, January 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Jiashun Liu, Johan Obando-Ceron, Han Lu, Yancheng He, Weixun Wang, Wenbo Su, Bo Zheng, Pablo Samuel
Castro, Aaron Courville, and Ling Pan. Asymmetric proximal policy optimization: mini-critics boost llm rea-
soning, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Under-
standing rl-zero-like training: A critical perspective, 2025.

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-language-action
models for embodied ai, 2025.

John Schulman, Sergey Levine, Philipp Moritz, Michael 1. Jordan, and Pieter Abbeel. Trust region policy opti-
mization, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continu-
ous control using generalized advantage estimation, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models, 2024.

[15] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA,

1998.

[16] Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as decision-making agents via

reinforcement learning.

[17] Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as decision-making agents via

reinforcement learning, 2024.

[18] Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan Huang, Lei Cui,

Qixiang Ye, Fang Wan, and Furu Wei. Geometric-mean policy optimization, 2025.

[19] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong Liu, Rui

Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy optimization, 2025.

8 Appendix

8.1 SFT Dataset
We run next-token prediction task on following synthetic data format.

{
"id": "fcf8c553-08cl-4cce-bbb7-d22e9cf10£10",
"conversations": [

{

"from": "human",

"value": "Solve this maze... {\"thoughts\":\"...\",\"actions\":[...]}"

}I
{
"from": "gpt",
"value": "{\"thoughts\":\"I need to find my way
up\",\"left\",...1}",

8.2 GRPO+ System Prompt

REASONING_START = "<REASONING>"
REASONING_END = "</REASONING>"
ACTIONS_START = "<ACTIONS>"
ACTIONS_END = "</ACTIONS>"

out.

\",\"actions\": [\"

SYSTEM_PROMPT = """You are a maze-solving AI. You will be shown an image of a
maze and must navigate from the green circle (start)

goal) .

The maze uses a grid system where:

— Black cells are walls (impassable)

— White cells are paths (walkable)

— Green circle = your current position (agent)
- Red circle = goal position

to the red circle (

Available actions: UP, DOWN, LEFT, RIGHT

Output format:
1. First, provide your reasoning about the maze layout and optimal path inside
{reasoning_start} and {reasoning_end} tags.
2. Then, provide your action sequence as a comma-separated list inside {
actions_start} and {actions_end} tags.

Example output:
{reasoning_start}
I can see a 5x5 maze. I'm at the top-left corner and need to reach the bottom-
right.
There’s a wall blocking the direct path, so I need to go around...
{reasoning_end}
{actions_start}
DOWN, DOWN, RIGHT, RIGHT, DOWN, RIGHT
{actions_end}
men format (
reasoning_start=REASONING_START,
reasoning_end=REASONING_END,
actions_start=ACTIONS_START,
actions_end=ACTIONS_END

10

9 PPO System Prompt

"You are an extremely smart maze solver. You see a top-down view of the maze.
The green marker is your CURRENT position. The red marker is the GOAL.

At this time step you must choose EXACTLY ONE next move for the agent,

NOT the entire path. Do NOT plan or output a full trajectory.

You are doing step-by-step decision making: on each call you output only the

NEXT move.
You can choose between four directions: ['N’, ’S’, 'E’, '"W'],
where N = move up, S = move down, E = move right, W = move left.

Your response MUST be a valid JSON object with EXACTLY ONE action, in the
following format:

"thoughts": "briefly think about the BEST next move only (do NOT describe
multiple steps)",
"action": "N" or "S" or "E" or "W"

NEVER output a list of actions. NEVER output more than one action.
If you are unsure, still choose exactly one of ['N’, ’S’, 'E', '"W']l."

9.1 PPO Reward Function

We try various reward functions, the two that seem the most promising with the best results are:
Normalized Euclidean Reward Function:

Let the agent state at time step ¢ be s, = (x, y+), and let the goal state be g = (24, yq).
The Euclidean distance to the goal is

4B = 15— gll, = /(0 — 20)2 + (0 —)2

Let d¥'¢ > 0 denote the maximum possible Euclidean distance between any valid state and the goal in this

environment. Define the normalized Euclidean distance

Euc
d;

JEuc __
dt - dEuc :

max

With a time penalty A > 0 and a terminal goal bonus Rg.a1 > 0, a purely state-based Euclidean reward can be
written as
PP = Z P A 4 Ry L[= g].

Manhattan Distance Difference Reward (Dense Reward):

The Manhattan distance to the goal is

d:lsv[an = |z — z4| + |yr — ygl-

A dense shaping reward based on Manhattan distance change, with time penalty A > 0 and terminal goal bonus
Rgoa1 > 0, can be defined as

—dMen t=0,

74115\/Iza‘n _
(@2 = ™) — X + Rgoai1[si =g], t>1.

11

We found that the PPO trained on the Dense Reward function had the best performance, so we further did a simple
(non-exhaustive) hyperparameter search on this and found a goal state bonus of 5 respectively with a time penalty of
0.3 seemed to converge well and perform best.

12

9.2 PPO Pseudo-Code

Algorithm 1 Iterative Maze-Solving Policy Optimization (Maze-PPO)

Require: Initial policy—value model (g, , Vwmn); dense step reward function 7gepse; maze dataset D; hy-
perparameters v, A, €, K
Ensure: Trained maze-solving policy g
L o = mo Vip = Vi
: for iteration =1,...,1 do
Told <— T
Sample a batch of mazes D, C D
Roll out trajectories in each maze m € Dy, using moq:
collect states s;, actions a;, and dense rewards
Tt = Tdense(5¢, G, S¢41) at every step

6: Compute returns and advantages A, for all steps using the dense rewards (e.g., GAE with v, \)
7: for PPO epoch=1,..., K do
8: Update (7g, V) by maximizing the clipped PPO objective
on minibatches of the collected maze rollouts
9: end for
10: end for

11: return 7y

9.3 GRPO Reward Function

Formatting. Let 1:°%°" and 12°!°" indicate whether the output contains exactly one reasoning and actions block.
With weight Ay
Rgmt — >\fmt (1§eason 4 I?C‘clons) .

Execution. If actions cannot be parsed, R{**° = —1. Otherwise, let dy and d; be initial and final Manhattan
distances to the goal and 7} the number of steps. Solved mazes receive

R?xec =)‘Solvc +)‘Cﬁ' max(O, 2d0 o TZ)’

and unsolved mazes receive
do — d;

RE° = Apartial —e
i partial max(do, 1)

13

9.4 GRPO Psuedo-Code

Algorithm 2 Iterative Maze-Solving Policy Optimization (Maze-GRPO)

Require: Initial policy model g, . ; reward model r,; maze dataset D; hyperparameters ¢, 3,

nit ?

Ensure: Trained maze-solving policy g

1. g < T,

2: for iteration =1,...,1 do

3: Tref < T

4 for step=1,..., M do

5: Sample a batch of mazes D, C D

6: TYyq < TO

7 Sample G action sequences for each maze m € Dy:

8 0j ~mg,, (- |m)fori=1,...,G

9: Compute rewards 7; for each sequence o; by running the parsed actions through the maze:
10: Compute advantages flm for each action ¢ in o; using group-relative estimation
11: for GRPO iteration =1,..., u do

12: Update policy 7y by maximizing the GRPO objective
13: end for
14: Update reward model 7, using replayed maze-solving rollouts
15: end for
16: end for

17: return 7y

9.5 GRPO Gradient Derivation

Let ¢ ~ pst be a prompt and let {ol}lel denote GG sampled output sequences from the behavior policy mgq. For

o= (o1, 0,0y), denote the tokenwise advantage by A; ;. Define the importance ratio
T9\01,i | 4,01,<i
’I"l’l(e) — 9(1 | l<) ,
Wold(Oz,i \ anl,<i)
and the reference ratio
24(0) = Mret (00 | 4,01,<i)
mo(oni | g, 01,<i)
The GRPO objective (Eq. 19) is
1 & 1
Jarro(0) = Eqoronmaa | & > Torl Z(m(@) Ay — B(21,i(0) — log 21,:(0) — 1)) :)
1=1 i=1

Gradient of the RL term. Since m,q is fixed,

Vo (Tl,i(e)/il,i) = A1 Vor1i(0) = Ay ri(0) Vo log mo(or,).)

Gradient of the reference penalty. Let f(z) =2 —logz —1,s0 f'(z) =1 — % Because x; ; = Tyet /o,
Vox; = —x1; Vologmg(or,i),
and therefore

Vol—Bf(z1:)] = B (x1,; — 1) Vg logmg(o,). (6)

14

Full GRPO gradient Combining the two components yields

G o]
1 1 .

VeJareo =E | = > ol > (Tl,i(e) A+ B (z1,:(0) — 1)) Vo logma(or) | - (7

1=1 i=1

Substituting the ratio definitions,
Vo E |l EG: 1 lzm:l 7g(01,:) AL+ 8 Tref (01,1 1)) 9o log o (011) ®
= - i e — 7 —_— Y — T i .
6 JGRPO IE lo1] Wol(i(Oz,i) 1, 70 (011) 0 108 Ty 0y,

=1 i=1

9.6 GSPO Gradient Derivation

Let 7 ~ D be a prompt and {y;}$; ~ 7oa(- |) be G sampled sequences from the behavior policy. For sequence
vi = (Y, ,yi,‘y”), let A; denote its advantage. Define the likelihood ratio

si(6) = w1 2)
Tola(Yi |)
The GSPO objective is
1< A
Jaspo(0) = Exn, y1.gmmoa el ; si(0) A;)
Since neither D nor m,1q depends on 6, the gradient moves inside the expectation:
VoTaspo (0 l Z A; Vs (0 1 : (10)
Using Vys;(0) = s;(0) Vg log s;(6), we obtain
G
VoJaspo (0 Z 0) A; Vylogs; (0)] . (11)
Since
log s;(0) =logmg(y; | ©) — log maia(y: | @), Vglog moa = 0,
we have
lyil
Vologsi(0) = Vglogmg(yi | ©) = > Vologmo(yi | z,yi<t).
t=1
G o y ‘ l’ A 1 lyil
VoJ - (: > Vo logmo(yis | T,y) (12)
0 GSPO IE z:: ol yl | x) ‘ i| ; o 10g G(QL,t | yz,<t)
9.7 PPO Objective
We begin with the one-step TD residual [[15]:
o =1t + YV (se41) — Vip(se),
GAE takes an exponentially weighted average over all k where A € [0, 1] controls the bias—variance tradeoff:
AFAE =" (y0) b1, (13)
1=0

15

The PPO surrogate relies on the per-timestep likelihood ratio:

mo(at | st)
re(0) = I8t
t() Tho1a (at | St)
Topo(0) = Epn, [min(rt(e) Ay, clip(re(0), 1 —¢, 1 +¢) At) — B Dyuy(m ||)] - (14)

16

	Introduction
	Related Work
	Methodology
	Input Representation and Environment
	Supervised Fine-Tuning

	RL Formulation
	GRPO Reward Function
	GRPO
	GSPO
	GMPO
	PPO

	Results
	GRPO
	GSPO
	GMPO
	PPO

	Discussion
	Conclusion
	Appendix
	SFT Dataset
	GRPO+ System Prompt

	PPO System Prompt
	PPO Reward Function
	PPO Pseudo-Code
	GRPO Reward Function
	GRPO Psuedo-Code
	GRPO Gradient Derivation
	GSPO Gradient Derivation
	PPO Objective

