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Abstract—Humanoid loco-manipulation requires coordinated
whole-body control for tasks like navigating while reaching for
objects. Recent diffusion-based policies enable multi-task control
through test-time guidance, but suffer from slow inference requir-
ing 20-50 iterative denoising steps, limiting control frequencies
to approximately 10 Hz. We address this bottleneck by using
an alternative of DDPM in the field of computer vision: Flow
Matching (FM), which enjoys both sample efficiency and simple
implementation. Incorporating FM as the generative modeling
achieves about 4x speedup while maintaining motion quality.
FM achieves 820 survival steps using merely 5-NFE inference
under perturbations, compared to DDPM’s 280 survival steps,
showing improvement in robustness at equivalent inference speed.
Furthermore, we show that FM naturally supports guidance tech-
niques as in DDPM counterpart. Notably, our training dataset
contains only walking motions from LAFAN1, yet combined with
training-free guidance, our model is able to conduct special
tasks such as end-effector tracking (RMSE ~ 1.1) and joystick
velocity control (RMSE = 0.55). This demonstrates outstanding
generalizability from locomotion-only data to loco-manipulation
behaviors without task-specific training. Our ablations reveal
that longer prediction horizons are beneficial for guidance-based
control, and adjusting guidance strengths can balance tracking
accuracy with motion stability.

Index Terms—humanoid robotics, loco-manipulation, flow
matching, diffusion models, imitation learning

I. INTRODUCTION
A. The Humanoid Loco-Manipulation Challenge

Humanoid robots represent a compelling platform for
general-purpose automation in human-centered environments.
Their anthropomorphic form factor enables them to navigate
spaces designed for humans, manipulate objects at human-
accessible heights, and perform tasks that leverage the full
kinematic capabilities of the human body. However, realizing
this potential requires solving the challenging problem of /oco-
manipulation: coordinating whole-body motion to achieve
simultaneous locomotion and manipulation objectives.

Unlike fixed-base manipulators that can treat the arm as an
isolated kinematic chain, humanoid manipulation fundamen-
tally couples upper-body reaching with lower-body balance
and locomotion. Reaching for an object shifts the robot’s
center of mass, requiring compensatory leg movements to
maintain balance. Walking while carrying an object changes
the system’s inertial properties, affecting gait stability. These
complex interactions demand policies that reason about whole-
body coordination rather than treating locomotion and manip-
ulation as separate problems.

The challenge is further compounded by the high dimen-
sionality of humanoid state and action spaces. A typical hu-
manoid has 20-30 actuated degrees of freedom, and generating
coordinated motions across all joints while satisfying physical
constraints (joint limits, torque limits, balance, collision avoid-
ance) is computationally demanding. Traditional approaches
using hand-crafted controllers or trajectory optimization are
brittle and require extensive task-specific engineering. Recent
learning-based methods train motion tracking policies via re-
inforcement learning on human motion capture data, achieving
impressive tracking quality but requiring separate policies for
each task [1].

A promising recent direction models trajectory generation
as a conditional generative modeling problem, using diffusion
models to learn distributions over feasible state-action trajecto-
ries. By predicting both future states and actions, these models
can be steered toward task objectives through test-time guid-
ance without retraining. However, synthesizing trajectories in
real-time that simultaneously satisfy locomotion and manipu-
lation objectives remains computationally prohibitive: current
diffusion-based generative models require 20-50 denoising
steps, each involving a full forward pass through a neural
network. On edge-device hardware, this results in control
frequencies around 10 Hz—too slow for highly dynamic
maneuvers. Furthermore, hardware constraints limit diffusion
policy effectiveness in humanoids, necessitating a faster, more
efficient algorithm for denoising actions.

B. Limitations of Current Approaches

Recent work has demonstrated the versatility of diffusion-
based trajectory generation for humanoid control. Beyond-
Mimic [1] achieves zero-shot downstream task performance
through test-time guidance, training Denoising Diffusion Prob-
abilistic Models (DDPM) to predict joint state-action tra-
jectories conditioned on observation history. By modeling
both states and actions, the diffusion model can be steered
toward task objectives without retraining. Despite its ver-
satility, DDPM sampling requires 20-50 iterative denoising
steps, each involving a full forward pass through the neural
network. On edge-device hardware, this results in control
frequencies around 10 Hz—too slow for highly dynamic loco-
manipulation maneuvers like rapid reaching while walking or
reactive corrections during arm movements.



Fig. 1: Example of robot waving it’s hand from a Flow
Matching policy using classifier guidance to wave its hand
in the air

C. Our Approach and Contributions

This work addresses the inference speed bottleneck. We
propose replacing DDPM with Flow Matching [2], [3], which
has demonstrated superior performance in computer vision
with both higher generation quality and faster sampling [4],
[5]. Flow Matching learns continuous transport paths between
noise and data distributions via ordinary differential equa-
tions, requiring significantly fewer function evaluations than
discrete-time diffusion processes.

Building on the BeyondMimic paradigm, we implement
a two-stage training pipeline: (1) train RL motion tracking
policies on walking sequences from LAFANI1, (2) distill these
experts into generative trajectory models via offline imitation,
and (3) enable zero-shot downstream tasks through analytical
test-time guidance. We make the following contributions:

1) Flow Matching for faster inference: We replace
DDPM with Flow Matching to achieve 5-10x speedup
while maintaining motion quality, enabling real-time
control at higher frequencies.

2) Zero-shot loco-manipulation from locomotion data:
We demonstrate that loco-manipulation capabilities can
emerge from walking-only training data through test-
time forward kinematics guidance, showing outstanding
generalizability.

Our results demonstrate that Flow Matching enables fast and
generalizable humanoid loco-manipulation control suitable for
real-time applications.

II. RELATED WORK
A. Traditional Robot Control

Classical robotic manipulation traditionally decouples
global motion planning from local joint trajectories for

fine-grained control. Sampling-based methods like Rapidly-
exploring Random Trees (RRT) and their optimal vari-
ants (RRT*) [6] offer probabilistic completeness in high-
dimensional configuration spaces, enabling path planning
through complex obstacle fields. However, these methods plan
in kinematic space and ignore dynamics, often producing tra-
jectories that are infeasible for execution on physical systems
with actuation limits and balance constraints.

Optimization-based planners like Graph of Convex Sets and
libraries like TrajOpt directly optimize trajectories with respect
to obstacles and collision costs [7]. These methods can incor-
porate dynamic constraints but are sensitive to initialization,
computationally expensive for high-dimensional systems, and
struggle with the non-convex constraints arising from contact
dynamics.

For humanoid robots specifically, whole-body quadratic pro-
gramming (QP) controllers have enabled impressive demon-
strations of locomotion and manipulation [8]-[10]. These
approaches formulate control as a prioritized optimization
problem, balancing task objectives against physical constraints
including joint limits, torque limits, and contact constraints.
However, they require highly accurate dynamics models, care-
fully tuned cost functions, and extensive task-specific engi-
neering. The resulting controllers are often brittle to model
mismatch and struggle to generalize across diverse tasks.

For loco-manipulation specifically, traditional pipelines face
fundamental limitations. The tight coupling between locomo-
tion and manipulation means that planning must jointly opti-
mize over the full body, dramatically increasing computational
cost. Long-horizon coordination, where the robot must plan
a sequence of locomotion and manipulation actions, remains
particularly challenging. Moreover, deterministic planners pro-
duce single trajectories rather than distributions, limiting be-
havioral diversity and the ability to adapt to uncertainty.

B. Motion Tracking and Imitation Learning

Learning from human motion capture data offers an alter-
native to hand-designed controllers. The DeepMimic frame-
work [11] demonstrated that reinforcement learning can train
policies to track diverse motion capture clips, producing nat-
uralistic, physically-feasible behaviors. Subsequent work has
extended this paradigm to increasingly challenging motions
and real hardware deployment.

Early motion-tracking approaches trained single-task poli-
cies for specific motions, requiring separate training runs for
each behavior. Recent work has explored scalable frameworks
that can track diverse motions within a single policy. PHC [12]
demonstrated universal humanoid motion tracking in simula-
tion, while OmniH20 [13], Exbody [14], and HumanPlus [15]
achieved sim-to-real transfer for multi-motion tracking on
physical hardware, though often with degraded motion quality
compared to simulation results.

A key challenge in motion tracking is the gap between
kinematic motion capture data and the actions required for
physics-based execution. Motion capture provides joint angles
and velocities but not the torques or position targets needed



to reproduce those motions under physics simulation. Our
approach addresses this by training per-trajectory tracking
policies that learn to generate appropriate actions for each
motion sequence.

C. Diffusion Models for Robot Control

Diffusion models have emerged as powerful tools for robot
control, naturally handling the multi-modal action distributions
that arise in complex tasks. Diffusion Policy [16] demonstrated
that diffusion models can learn visuomotor policies for ma-
nipulation, achieving state-of-the-art performance on contact-
rich tasks. DiffuseLoco [17] extended diffusion policies to
quadruped locomotion, enabling smooth gait transitions and
robust real-world deployment.

For humanoid control, BeyondMimic [1] represents the
current state-of-the-art, training DDPM models on diverse
LAFAN1 motion data and enabling zero-shot task performance
through analytical test-time guidance. By jointly modeling
states and actions, the diffusion model can be steered toward
task objectives defined in state space without retraining. This
approach achieves impressive versatility, performing waypoint
navigation, joystick control, and obstacle avoidance with a
single trained model. However, DDPM sampling requires 20—
50 iterative denoising steps, limiting deployment to scenarios
that can tolerate the resulting latency.

Diffuse-CLoC [18] introduced innovations for physics-
based character control in simulation, demonstrating that joint
state-action diffusion enables effective test-time guidance.
PDP [19] showed that collecting data with noise injection
during expert rollouts improves robustness by exposing the
model to corrective actions from perturbed states.

D. Flow Matching for Generative Modeling

Flow Matching [2], [3] offers an alternative to diffusion
models by learning continuous transport paths between distri-
butions. Unlike DDPM’s discrete-time reverse process, Flow
Matching uses continuous ordinary differential equations, re-
sulting in more efficient sampling. Recent work in computer
vision [4], [5] has shown that Flow Matching achieves better
generation quality with significantly fewer function evalua-
tions.

The key advantage for robot control lies in the sampling
efficiency: while DDPM requires 20-50 denoising steps, Flow
Matching can generate high-quality samples in 5—10 steps. Re-
cent work [4] has shown that classifier-free guidance transfers
naturally from diffusion to Flow Matching, suggesting that
analytical test-time guidance should also be compatible.

E. Imitation Learning and Distribution Shift

Imitation learning from offline demonstrations suffers from
covariate shift [20]: policies trained on expert state distribu-
tions encounter novel states during deployment, leading to
compounding errors. This is particularly problematic for loco-
manipulation where deviations in whole-body coordination can
cause task failure. While we focus on the inference speed
problem in this work, addressing distribution shift through

techniques like DAgger remains an important direction for
future work.

F. Test-Time Guidance

Test-time guidance is a common strategy to steer generative
models to certain tasks for task-consistent behavior with-
out any additional supervision. In diffusion-based robot con-
trollers, analytic constraints—such as target end-effector goals,
contact schedules, or balance objectives—can be injected
during sampling through classifier guidance (CG) or classifier-
free guidance (CFQG), effectively biasing the denoising process
toward trajectories satisfying downstream control costs. Simi-
lar behavior is proven to work in Flow-Matching models where
we transport samples through constraint-specified manifolds.
For loco-manipulation specifically, this test-time guidance
provides a way to incorporate goal-based tasks, feasibility
constraints, and any physics priors that weren’t learned by
the generative model.

III. METHOD

Our approach follows a two-stage pipeline: (1) train motion
tracking policies via reinforcement learning to generate action
labels for motion capture data, and (2) distill these expert
policies into a generative trajectory model that enables test-
time guidance for downstream tasks.

A. Problem Formulation

Following BeyondMimic [1], we address the loco-
manipulation control problem: given locomotion objectives
(e.g., navigate to waypoint) and reaching objectives (e.g.,
move end-effector to position (z,y, z)), generate a physically
feasible whole-body trajectory that simultaneously achieves
both goals.

At each timestep ¢, our model predicts a trajectory 7 =
[at,St41, Q¢ 41, .., St 1, ar | containing the current action
and H steps of future state-action pairs, conditioned on
observation history O; = [s¢—n,a;—nN, . ..,S;] of length N.

B. Motion Tracking via Reinforcement Learning

Motion capture datasets provide kinematic references but
lack action labels for imitation learning. Following Beyond-
Mimic [1], we train motion tracking policies via reinforcement
learning to generate actions that reproduce reference motions
in physics simulation.

We train a separate policy m; for each walking trajectory
T; in LAFANI1. This per-trajectory approach allows each
policy to specialize without mode-averaging, enables parallel
training, and achieves higher tracking fidelity than multi-
task alternatives. Policies are trained using PPO with rewards
based on pose and velocity tracking errors for selected body
keypoints, plus regularization penalties for joint limits, action
smoothness, and self-collision.



C. Flow Matching for Trajectory Generation

a) Training Objective: We train a prediction network
vg (T, t,Oy) that predicts velocity targets for transporting
trajectories from noise to data. By sampling a clean trajectory
7, and Gaussian noise Ty, the training objective regresses on
the conditional velocity:

L =Eirym[llvo(re,t,0p) — (11 — 70) %] (D

where vy is our network, ¢ ~ p(¢) is a time schedule, and 7
is the noised trajectory at time t.

b) Test-Time Guidance: Following BeyondMimic, we
enable zero-shot task performance through analytical guid-
ance. For a task-specific cost function Gy (7) (e.g., waypoint
navigation, end-effector reaching), we guide the velocity out-
put:

vy = vg — WV 7, Gsk 2)

where w controls guidance strength. This enables the same
policy to perform diverse downstream tasks by simply chang-
ing the guidance objective at test time.

Following [21], we choose to not apply guidance on the final
5 denoising steps when using an NFE of 20. We empirically
find that only applying guidance on an interval of steps greatly
helps improve stability.

D. Forward Kinematics Guidance for Loco-Manipulation

We extend test-time guidance to loco-manipulation tasks
without requiring manipulation-specific training data. Al-
though our training data contains only walking motions, by
defining guidance objectives over end-effector poses computed
via forward kinematics, we can steer trajectories toward de-
sired configurations:

Ereach = ||FK(qt) - ptargetH2 (3)

where FK maps joint angles to hand position. This enables
zero-shot loco-manipulation: the same policy can perform
reaching tasks by changing the guidance objective at test time.

E. Dataset Augmentation

A key insight from PDP [19] is that RL policies provide
not only optimal trajectories but, more importantly, corrective
actions from sub-optimal states. We leverage this insight by
collecting noisy-state clean-action paired trajectories rather
than standard clean-state clean-action pairs.

Specifically, during data collection we roll out each trained
RL policy 77; with action noise injection: a; = 7r7; (s¢, 7) +e¢,
where € is Gaussian noise. Critically, we store tuples of the
form:

(§t> a:, S:+1)a

where s; is the noisy state resulting from previous noisy
actions, but af = 77, (8, 7) is the clean optimal action from
the expert policy. This creates a “noise band” around expert
trajectories, enabling the model to learn corrective behaviors
that recover from perturbations.

a) Multi-Scale Noise Augmentation: We extend the PDP
framework by collecting rollouts at multiple noise scales
simultaneously. For each motion sequence, we run 40 parallel
environments with varying noise levels:

¢ 16 environments at o = (0.12

e 12 environments at ¢ = 0.16

e 6 environments at o0 = 0.24

e 6 environments at o = 0.36
where o controls the standard deviation of the Gaussian
noise added to actions. This multi-scale approach widens the
distribution coverage: lower noise levels (o = 0.12) capture
fine-grained corrections near the expert trajectory, while higher
noise levels (o = 0.36) expose the model to larger deviations
requiring more aggressive recovery maneuvers. The graduated
allocation (more environments at lower noise) ensures dense
coverage near the expert while still sampling challenging
recovery scenarios.

b) Final Dataset: The final dataset D is the union of all
noise-augmented trajectories across all noise scales:

D= U D,.

€{0.12,0.16,0.24,0.36}

This augmentation strategy yields a generative model robust to
state estimation errors and environmental perturbations while
generating physically valid corrective actions.

IV. EXPERIMENTAL SETUP
A. Data Collection and RL Training

We use the walking sequences from the LAFANI dataset.
We train motion tracking policies using Proximal Policy
Optimization (PPO) with adaptive sampling to emphasize
challenging motion segments. For each motion sequence, we
collect approximately 40 rollouts (/3.5 hours of data) with
action noise injection to perturb states and gather corrective
actions, improving robustness.

a) State Representation via Forward Kinematics: We use
the SMPL skeleton with J = 23 spherical joints. Rather than
using joint-space representations directly, we transform gen-
eralized coordinates (q, q) into Cartesian body positions and
velocities via forward kinematics (FK). Given joint positions
q € R3 and velocities ¢ € R*/, FK computes the pose
Ty = FKos(q) and twist V, = Ji(q)q for each body b, where
Jp is the body Jacobian. This Cartesian representation offers
two advantages: (1) it provides explicit spatial grounding for
guidance objectives defined in task space, and (2) it avoids
compounding errors that accumulate through the kinematic
chain when predicting joint angles.

The state vector (165-dimensional) consists of:

o Global States: root position (R3), linear velocity (R?),
and rotation (R?) as rotation vectors, expressed relative
to the character frame—a local coordinate system with
origin at the root, x-axis aligned with the character’s
facing direction, and z-axis pointing upward

o Local States: Cartesian body positions (R>’) and linear
velocities (R3”) computed via FK, plus hand/ankle rota-
tions (R3*4), all expressed in the character frame



b) Character Frame and Coordinate Transform: We
explicitly define a character frame C'. Let W denote the world
frame and "p,or € R3 and groo be the root (pelvis) position
and orientation in W. We extract the yaw angle v from goo
and construct the yaw-only rotation

cosy —siny 0
WRe() = |siny  cosy 0], “Rw = ("Reo) .
0 0 1

The origin of C is at the root, Wpc = Wprom, with the x-axis
aligned with the facing direction and z-axis pointing upward.

Given body positions Wp; and velocities "v; in the world
frame, and root linear velocity Wroot, We obtain character-

frame quantities via

i = R ("pi — Vproot), 4)
“; = Ry ("o; — Wroon). (5)

All global and local state features described above are ex-
pressed in this character frame, providing translation and yaw
invariance.

c) Action Space and PD Control: The action space (69-
dimensional) represents target joint positions q* € R3” for
a low-level proportional-derivative (PD) controller. The PD
controller converts these position targets into joint torques:

e q) — Kqq, (6)

where K,, Kq € R3/*3/ are diagonal gain matrices for
stiffness and damping, respectively. Following [1], we set
gains based on reflected motor inertia: k,; = I;w? and
kq; = 21;Cwy, where w, = 10 Hz is the natural frequency,
¢ = 2 is the damping ratio (overdamped for stability), and
I; = k37j1m0t0r7j is the reflected inertia accounting for gear
ratio kg ;.

The policy outputs normalized actions a; € [—1,1]37,
which are scaled to target positions: i = q+aa;, where q is
a nominal configuration and « controls the action range. This
PD formulation provides implicit torque information through
current and prior commands while maintaining compliance for
impact absorption—essential properties for dynamic humanoid
control.

T = Kp(q

B. Model Training

We train two model variants to compare DDPM and Flow
Matching:
1) DDPM Baseline: Standard DDPM following Beyond-
Mimic
2) Flow Matching: Flow Matching with standard architec-
ture

All models use a small Transformer decoder with 6 lay-
ers, 8 heads, and 512-dimensional embeddings (about 20M
parameters, ~1 GB GPU memory for inference). We train
with observation history N = 4 (=0.13s). By default, we use
a predict horizon of 4 for FM and DDPM comparison and
16 for guidance-based control. We use the Adam optimizer
with learning rate 1 X 1073, no weight decay, 10,000-step

warmup, and constant learning rate schedule. We train models
until convergence (which takes =24 hours) on 32 TPU v4
cores. Inference time is measured on an Nvidia RTX 4060
and A6000 GPU with TensorRT acceleration.

C. Evaluation Tasks and Metrics

We evaluate our models across multiple tasks to assess both
speed and quality:

a) Locomotion Quality: We verify that Flow Matching
achieves comparable tracking quality to DDPM on LAFAN1
sequences. We measure motion quality using Fréchet
Inception Distance (FID) between generated and reference
motions.

b) Loco-Manipulation via FK Guidance: We test zero-
shot loco-manipulation through forward kinematics guidance:

o End-effector waypoint precision: Average Euclidean
distance ||ppand(t) — Puarget| Over trajectory, measured
across 20 reaching trials with random target positions

o Guidance composition success: Percentage of trials
where both locomotion goal (pelvis within 0.5m of way-
point) and reaching goal (hand within 15cm of target) are
simultaneously achieved

V. RESULTS

We evaluate our approach through three complementary ex-
periments: (1) survival under perturbations comparing DDPM
and Flow Matching at varying numbers of function evaluations
(NFE), (2) joystick-based velocity control, and (3) end-effector
position tracking for manipulation tasks.

A. Survival Comparison: Flow Matching vs. DDPM

We evaluate the intrinsic robustness of the two generative
controllers by measuring their survival time under periodic
perturbations. In this setting, the humanoid performs uncondi-
tional walking while receiving random root-velocity pertur-
bations sampled uniformly from [0,0.5] m/s every second.
Survival time is defined as the mean number of simulation
steps before failure, where failure occurs when the head height
drops below 0.2 m.

Figure 2 reports survival time across different NFEs on
a logarithmic scale. At high NFE (20 steps), both models
exhibit comparable robustness, achieving roughly 470 mean
survival steps. As NFE decreases, however, a pronounced
performance gap emerges. At NFE=5, Flow Matching retains
strong stability with about 820 survival steps, while DDPM
degrades to around 280 steps. This divergence further am-
plifies at lower NFEs: at NFE=2, Flow Matching achieves
approximately 450 steps compared to DDPM’s 150 steps;
at NFE=1, Flow Matching still maintains around 280 steps,
whereas DDPM collapses to roughly 30 steps. These results
highlight Flow Matching’s substantially superior robustness in
low-NFE regimes.

This result has significant implications for real-time control.
DDPM requires approximately 20 NFE to achieve stable
walking, resulting in inference times of approximately 20ms
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Fig. 2: Mean survival steps vs. number of function evaluations
(NFE) for Flow Matching and DDPM. Flow Matching main-
tains robust performance even at very low NFE (1-5 steps),
while DDPM degrades significantly below 10 steps. Shaded
regions indicate standard deviation across 50 trials.

per control step. In contrast, Flow Matching achieves compa-
rable or superior performance at NFE=5, enabling 4x faster
inference. Qualitatively, we observe that DDPM at low NFE
produces motions that deviate significantly from the training
distribution, with unnatural poses and jerky movements, while
Flow Matching generates smooth, natural walking even at
NFE=1.

B. Joystick Velocity Control

We evaluate guided locomotion using joystick-style velocity
commands. The guidance cost for joystick control is defined
as the squared difference between predicted root velocity and
the commanded velocity:

1 t+H
Gi(1) =5 D IVay (1) — ol ™

t'=t

where v,/ extracts the planar root velocity at timestep ¢’ and
g, € R? is the goal velocity from the joystick controller. We
issue a sequence of directional commands (forward, backward,
turn left, turn right) each lasting 3 seconds and measure
the root mean squared error (RMSE) between achieved and
commanded velocities.

a) Effect of Prediction Horizon: Figure 3 (left) shows
joystick RMSE as a function of prediction horizon H. We ob-
serve a consistent improvement with longer horizons: RMSE
decreases from approximately 1.05 at H = 2 to 0.70 at
H = 16. This 33% reduction demonstrates that longer pre-
diction horizons enable more effective guidance, as the model
can plan velocity changes over a longer temporal extent.

b) Effect of Guidance Scale w: Figure 4 (left) shows
the effect of classifier guidance scale on joystick tracking
performance. RMSE decreases from approximately 0.725 at
w = 10 to 0.55 at w = 40, representing a 24% improvement.
We observe a trade-off between control and stability when
adjusting guidance scales: guidance scales above 40 begin to
destabilize the walking gait, leading to increased fall rates.

Fig. 3: RMSE vs. prediction horizon for joystick control (left)
and end-effector tracking (right). Longer prediction horizons
consistently improve tracking accuracy for both tasks, with
RMSE decreasing by 33% and 24% respectively from H = 2
to H = 16.

This suggests an optimal operating range of w € [30,40] for
velocity control tasks.

C. Zero-Shot End-Effector Manipulation

The most striking result of our work is the emergence
of manipulation capabilities from locomotion-only training
data. Despite training exclusively on walking sequences from
LAFAN1, our model combined with forward kinematics guid-
ance achieves strong end-effector tracking performance.

The guidance cost for end-effector control is:

t+H
Gee(7> = Z HFK(%') - ptargetH2 ¥

t'=t

where FK computes hand position from joint angles via
forward kinematics. We evaluate reaching tasks where the
humanoid must move its hand to randomly sampled target
positions while maintaining stable walking.

a) Effect of Prediction Horizon: Figure 3 (right) shows
end-effector RMSE versus prediction horizon. Similar to
joystick control, longer horizons improve tracking: RMSE
decreases from approximately 1.52 at H = 2 to 1.15 at
H =16, a 24% improvement. This confirms that the guidance
mechanism benefits from extended temporal planning for both
locomotion and manipulation objectives.

b) Effect of Classifier Guidance Scale w: Figure 4 (right)
reveals an interesting non-monotonic relationship between
guidance scale and end-effector tracking. RMSE decreases
from 1.49 at w = 20 to a minimum of approximately 1.11
at w = 100, then slightly increases at higher guidance scales.
This indicates an optimal guidance strength that balances
tracking accuracy with motion naturalness—too weak guid-
ance fails to reach targets, while too strong guidance produces
unnatural arm movements that compromise overall stability.

D. Generalization from Locomotion to Manipulation

An interesting finding of this work is that manipulation ca-
pabilities emerge naturally from locomotion-only training data
when combined with test-time guidance. Our training dataset
contains exclusively walking motions—no reaching, grasping,
or manipulation demonstrations. Yet the model successfully
tracks end-effector targets with reasonable accuracy (RMSE
~ 1.1 at optimal settings).



Fig. 4: RMSE vs. classifier guidance scale for joystick control
(left) and end-effector tracking (right). Both tasks show im-
proved tracking with stronger guidance up to an optimal point,
after which stability begins to degrade.

This generalization occurs because: (1) walking motions
contain natural arm swings and postural adjustments that span
a substantial portion of the arm’s reachable workspace, (2) the
Flow Matching model learns a smooth manifold of physically
plausible poses that can be continuously deformed toward
novel configurations, and (3) classifier guidance provides the
steering signal to navigate this manifold toward task-relevant
regions.

This finding has significant practical implications: it sug-
gests that manipulation capabilities can be bootstrapped from
more readily available locomotion datasets, reducing the need
for expensive manipulation-specific motion capture or teleop-
eration data collection.

VI. DISCUSSION

A. Why Flow Matching Outperforms DDPM at Low NFE

Our results demonstrate that Flow Matching significantly
outperforms DDPM when operating at low numbers of func-
tion evaluations—precisely the regime required for real-time
robot control. We attribute this to fundamental differences in
how the two approaches model the generative process.

DDPM learns a discrete-time reverse diffusion process
where each denoising step attempts to remove a fixed amount
of Gaussian noise. When the number of steps is reduced,
the model must make larger “jumps” per step, and errors
accumulate rapidly because each step’s prediction depends
on the previous step’s output. The noise schedule in DDPM
is carefully calibrated for a specific number of steps, and
deviating from this schedule leads to distribution mismatch.

In contrast, Flow Matching learns a continuous velocity
field that directly transports samples from noise to data along
straight paths. The optimal transport formulation encourages
straighter trajectories, which can be accurately integrated with
fewer discretization steps. Even with a single Euler step
(NFE=1), Flow Matching produces samples that lie approx-
imately on the data manifold, whereas DDPM at NFE=1
produces samples that are far from the learned distribution.

This theoretical advantage translates directly to practical
benefits for humanoid control: Flow Matching enables 4—
10x faster inference while maintaining or improving motion
quality, enabling control frequencies that approach the require-
ments for dynamic loco-manipulation.

B. The Horizon-Guidance Trade-off

Our ablation studies reveal complementary roles for predic-
tion horizon and guidance strength. Longer horizons improve
task performance (lower RMSE) by enabling the model to
plan trajectories that smoothly satisfy guidance objectives
over extended time periods. This is particularly important for
manipulation tasks where the hand must traverse significant
distances while maintaining balance.

However, longer horizons also increase computational cost
linearly with H. Combined with our finding that Flow Match-
ing achieves good performance at low NFE, this suggests an
optimal operating point: use moderate horizons (H =~ 16) with
few integration steps (NFE =~ 5) to achieve both good task
performance and real-time inference.

Guidance strength exhibits a different trade-off: stronger
guidance improves task accuracy but can destabilize the un-
derlying motion. We observe that excessively strong guidance
pushes the model toward poses that are out-of-distribution
relative to the training data, resulting in physically implau-
sible configurations and eventual falls. The optimal guidance
strength varies by task—end-effector manipulation requires
stronger guidance (CG ~ 100) than velocity control (CG
~ 40)—Ilikely because manipulation targets are farther from
the natural arm positions in walking data.

C. Limitations

Our approach has several limitations that suggest directions
for future work:

a) Limited Motion Diversity: Our training data con-
tains only walking motions, which constrains the range of
achievable behaviors. While manipulation capabilities emerge
through guidance, the model cannot produce motions that
differ substantially from walking, such as crouching, jumping,
or turning in place. Expanding the training data to include
more diverse locomotion styles would likely improve both the
range and quality of guided behaviors.

b) Guidance Tuning: The optimal guidance strength
varies across tasks and must be tuned empirically. An au-
tomatic guidance adaptation mechanism that adjusts strength
based on task difficulty or current tracking error would im-
prove usability.

c) Distribution Shift: Like all imitation learning ap-
proaches, our method suffers from distribution shift when
the policy encounters states not seen during training. The
noise-augmented data collection partially addresses this, but
compounding errors can still lead to degraded performance
over long rollouts. Techniques like DAgger [20] that collect
additional data from the deployed policy could improve ro-
bustness.

d) Skill Transitions: The model struggles to transition
between distinct behaviors. When guidance objectives change
suddenly (e.g., switching from walking forward to reaching a
distant target), the model may become trapped in its current
mode rather than smoothly transitioning to a new behavior.
This is a fundamental limitation of the diffusion/flow matching



approach when the target behavior lies far from the current
state on the learned manifold.

VII. FUTURE WORK

Several promising directions extend this work:

a) Real-World Deployment: Our experiments are con-
ducted in simulation. Deploying on physical hardware requires
addressing additional challenges including state estimation
noise, communication latency, and unmodeled dynamics. The
robustness demonstrated in our perturbation experiments sug-
gests the policy may transfer well, but systematic sim-to-real
experiments are needed.

b) Multi-Task Training: Training on more diverse motion
data—including running, jumping, dancing, and manipulation
demonstrations—would expand the range of achievable behav-
iors. The per-trajectory training approach scales naturally to
larger datasets.

c) Hierarchical Control: Combining our approach with
higher-level planning could enable more complex tasks. A
planner could generate waypoint sequences that the Flow
Matching policy tracks, enabling navigation in cluttered en-
vironments or multi-step manipulation tasks.

d) Online Adaptation: Incorporating online learning
mechanisms like DAgger would address distribution shift by
collecting corrective data during deployment. This is partic-
ularly important for long-horizon tasks where compounding
errors become significant.

VIII. CONCLUSION

We presented a fast humanoid loco-manipulation system
that replaces DDPM with Flow Matching for efficient trajec-
tory generation. Our key findings are:

1) Efficient inference via Flow Matching: Flow Matching
achieves 4x faster inference than DDPM while main-
taining or improving motion quality. At NFE=5, Flow
Matching achieves 820 mean survival steps compared to
DDPM’s 280 steps—demonstrating that the efficiency
gains do not sacrifice robustness. This enables control
frequencies suitable for dynamic humanoid maneuvers.

2) Outstanding generalizability from locomotion to ma-
nipulation: Despite training exclusively on walking mo-
tions from LAFANI1, our model combined with clas-
sifier guidance achieves strong end-effector tracking
(RMSE =~ 1.1) and velocity control (RMSE =~ 0.55).
This demonstrates that loco-manipulation capabilities
can emerge from locomotion-only data through test-time
forward kinematics guidance, eliminating the need for
expensive manipulation-specific data collection.

3) Prediction horizon improves guidance: Longer pre-
diction horizons consistently improve task performance,
with RMSE reductions of 24-33% when increasing
horizon from 2 to 16 steps. This suggests that effec-
tive guidance requires planning over extended temporal
windows.

Our results establish Flow Matching as a superior alternative

to DDPM for real-time humanoid control, particularly in

low-latency regimes where DDPM’s performance degrades
significantly. The emergence of manipulation capabilities from
locomotion data suggests a path toward building versatile
humanoid controllers from readily available motion datasets.
Future work will focus on real-world deployment, expanding
training data diversity, and incorporating online adaptation to
address distribution shift over long-horizon tasks.
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